3.505 \(\int \tan ^2(c+d x) \sqrt{a+b \tan (c+d x)} \, dx\)

Optimal. Leaf size=382 \[ -\frac{b \log \left (-\sqrt{2} \sqrt{\sqrt{a^2+b^2}+a} \sqrt{a+b \tan (c+d x)}+\sqrt{a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt{2} d \sqrt{\sqrt{a^2+b^2}+a}}+\frac{b \log \left (\sqrt{2} \sqrt{\sqrt{a^2+b^2}+a} \sqrt{a+b \tan (c+d x)}+\sqrt{a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt{2} d \sqrt{\sqrt{a^2+b^2}+a}}-\frac{b \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a^2+b^2}+a}-\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} d \sqrt{a-\sqrt{a^2+b^2}}}+\frac{b \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a^2+b^2}+a}+\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} d \sqrt{a-\sqrt{a^2+b^2}}}+\frac{2 (a+b \tan (c+d x))^{3/2}}{3 b d} \]

[Out]

-((b*ArcTanh[(Sqrt[a + Sqrt[a^2 + b^2]] - Sqrt[2]*Sqrt[a + b*Tan[c + d*x]])/Sqrt[a - Sqrt[a^2 + b^2]]])/(Sqrt[
2]*Sqrt[a - Sqrt[a^2 + b^2]]*d)) + (b*ArcTanh[(Sqrt[a + Sqrt[a^2 + b^2]] + Sqrt[2]*Sqrt[a + b*Tan[c + d*x]])/S
qrt[a - Sqrt[a^2 + b^2]]])/(Sqrt[2]*Sqrt[a - Sqrt[a^2 + b^2]]*d) - (b*Log[a + Sqrt[a^2 + b^2] + b*Tan[c + d*x]
 - Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]])/(2*Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*d) + (b*L
og[a + Sqrt[a^2 + b^2] + b*Tan[c + d*x] + Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]])/(2*Sqrt
[2]*Sqrt[a + Sqrt[a^2 + b^2]]*d) + (2*(a + b*Tan[c + d*x])^(3/2))/(3*b*d)

________________________________________________________________________________________

Rubi [A]  time = 0.306337, antiderivative size = 382, normalized size of antiderivative = 1., number of steps used = 12, number of rules used = 8, integrand size = 23, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.348, Rules used = {3543, 3485, 700, 1129, 634, 618, 206, 628} \[ -\frac{b \log \left (-\sqrt{2} \sqrt{\sqrt{a^2+b^2}+a} \sqrt{a+b \tan (c+d x)}+\sqrt{a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt{2} d \sqrt{\sqrt{a^2+b^2}+a}}+\frac{b \log \left (\sqrt{2} \sqrt{\sqrt{a^2+b^2}+a} \sqrt{a+b \tan (c+d x)}+\sqrt{a^2+b^2}+a+b \tan (c+d x)\right )}{2 \sqrt{2} d \sqrt{\sqrt{a^2+b^2}+a}}-\frac{b \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a^2+b^2}+a}-\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} d \sqrt{a-\sqrt{a^2+b^2}}}+\frac{b \tanh ^{-1}\left (\frac{\sqrt{\sqrt{a^2+b^2}+a}+\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} d \sqrt{a-\sqrt{a^2+b^2}}}+\frac{2 (a+b \tan (c+d x))^{3/2}}{3 b d} \]

Antiderivative was successfully verified.

[In]

Int[Tan[c + d*x]^2*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

-((b*ArcTanh[(Sqrt[a + Sqrt[a^2 + b^2]] - Sqrt[2]*Sqrt[a + b*Tan[c + d*x]])/Sqrt[a - Sqrt[a^2 + b^2]]])/(Sqrt[
2]*Sqrt[a - Sqrt[a^2 + b^2]]*d)) + (b*ArcTanh[(Sqrt[a + Sqrt[a^2 + b^2]] + Sqrt[2]*Sqrt[a + b*Tan[c + d*x]])/S
qrt[a - Sqrt[a^2 + b^2]]])/(Sqrt[2]*Sqrt[a - Sqrt[a^2 + b^2]]*d) - (b*Log[a + Sqrt[a^2 + b^2] + b*Tan[c + d*x]
 - Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]])/(2*Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*d) + (b*L
og[a + Sqrt[a^2 + b^2] + b*Tan[c + d*x] + Sqrt[2]*Sqrt[a + Sqrt[a^2 + b^2]]*Sqrt[a + b*Tan[c + d*x]]])/(2*Sqrt
[2]*Sqrt[a + Sqrt[a^2 + b^2]]*d) + (2*(a + b*Tan[c + d*x])^(3/2))/(3*b*d)

Rule 3543

Int[((a_.) + (b_.)*tan[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*tan[(e_.) + (f_.)*(x_)])^2, x_Symbol] :> Simp[
(d^2*(a + b*Tan[e + f*x])^(m + 1))/(b*f*(m + 1)), x] + Int[(a + b*Tan[e + f*x])^m*Simp[c^2 - d^2 + 2*c*d*Tan[e
 + f*x], x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] &&  !LeQ[m, -1] &&  !(EqQ[m, 2] && EqQ
[a, 0])

Rule 3485

Int[((a_) + (b_.)*tan[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[b/d, Subst[Int[(a + x)^n/(b^2 + x^2), x], x
, b*Tan[c + d*x]], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[a^2 + b^2, 0]

Rule 700

Int[Sqrt[(d_) + (e_.)*(x_)]/((a_) + (c_.)*(x_)^2), x_Symbol] :> Dist[2*e, Subst[Int[x^2/(c*d^2 + a*e^2 - 2*c*d
*x^2 + c*x^4), x], x, Sqrt[d + e*x]], x] /; FreeQ[{a, c, d, e}, x] && NeQ[c*d^2 + a*e^2, 0]

Rule 1129

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4), x_Symbol] :> With[{q = Rt[a/c, 2]}, With[{r = Rt[2*q - b/
c, 2]}, Dist[1/(2*c*r), Int[x^(m - 1)/(q - r*x + x^2), x], x] - Dist[1/(2*c*r), Int[x^(m - 1)/(q + r*x + x^2),
 x], x]]] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0] && GeQ[m, 1] && LtQ[m, 3] && NegQ[b^2 - 4*a*c]

Rule 634

Int[((d_.) + (e_.)*(x_))/((a_) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Dist[(2*c*d - b*e)/(2*c), Int[1/(a +
 b*x + c*x^2), x], x] + Dist[e/(2*c), Int[(b + 2*c*x)/(a + b*x + c*x^2), x], x] /; FreeQ[{a, b, c, d, e}, x] &
& NeQ[2*c*d - b*e, 0] && NeQ[b^2 - 4*a*c, 0] &&  !NiceSqrtQ[b^2 - 4*a*c]

Rule 618

Int[((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(-1), x_Symbol] :> Dist[-2, Subst[Int[1/Simp[b^2 - 4*a*c - x^2, x], x]
, x, b + 2*c*x], x] /; FreeQ[{a, b, c}, x] && NeQ[b^2 - 4*a*c, 0]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 628

Int[((d_) + (e_.)*(x_))/((a_.) + (b_.)*(x_) + (c_.)*(x_)^2), x_Symbol] :> Simp[(d*Log[RemoveContent[a + b*x +
c*x^2, x]])/b, x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[2*c*d - b*e, 0]

Rubi steps

\begin{align*} \int \tan ^2(c+d x) \sqrt{a+b \tan (c+d x)} \, dx &=\frac{2 (a+b \tan (c+d x))^{3/2}}{3 b d}-\int \sqrt{a+b \tan (c+d x)} \, dx\\ &=\frac{2 (a+b \tan (c+d x))^{3/2}}{3 b d}-\frac{b \operatorname{Subst}\left (\int \frac{\sqrt{a+x}}{b^2+x^2} \, dx,x,b \tan (c+d x)\right )}{d}\\ &=\frac{2 (a+b \tan (c+d x))^{3/2}}{3 b d}-\frac{(2 b) \operatorname{Subst}\left (\int \frac{x^2}{a^2+b^2-2 a x^2+x^4} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{d}\\ &=\frac{2 (a+b \tan (c+d x))^{3/2}}{3 b d}-\frac{b \operatorname{Subst}\left (\int \frac{x}{\sqrt{a^2+b^2}-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}+\frac{b \operatorname{Subst}\left (\int \frac{x}{\sqrt{a^2+b^2}+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}\\ &=\frac{2 (a+b \tan (c+d x))^{3/2}}{3 b d}-\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{a^2+b^2}-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{2 d}-\frac{b \operatorname{Subst}\left (\int \frac{1}{\sqrt{a^2+b^2}+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{2 d}-\frac{b \operatorname{Subst}\left (\int \frac{-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}}+2 x}{\sqrt{a^2+b^2}-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}+\frac{b \operatorname{Subst}\left (\int \frac{\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}}+2 x}{\sqrt{a^2+b^2}+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} x+x^2} \, dx,x,\sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}\\ &=-\frac{b \log \left (a+\sqrt{a^2+b^2}+b \tan (c+d x)-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} \sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}+\frac{b \log \left (a+\sqrt{a^2+b^2}+b \tan (c+d x)+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} \sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}+\frac{2 (a+b \tan (c+d x))^{3/2}}{3 b d}+\frac{b \operatorname{Subst}\left (\int \frac{1}{2 \left (a-\sqrt{a^2+b^2}\right )-x^2} \, dx,x,-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}}+2 \sqrt{a+b \tan (c+d x)}\right )}{d}+\frac{b \operatorname{Subst}\left (\int \frac{1}{2 \left (a-\sqrt{a^2+b^2}\right )-x^2} \, dx,x,\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}}+2 \sqrt{a+b \tan (c+d x)}\right )}{d}\\ &=-\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+\sqrt{a^2+b^2}}-\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} \sqrt{a-\sqrt{a^2+b^2}} d}+\frac{b \tanh ^{-1}\left (\frac{\sqrt{a+\sqrt{a^2+b^2}}+\sqrt{2} \sqrt{a+b \tan (c+d x)}}{\sqrt{a-\sqrt{a^2+b^2}}}\right )}{\sqrt{2} \sqrt{a-\sqrt{a^2+b^2}} d}-\frac{b \log \left (a+\sqrt{a^2+b^2}+b \tan (c+d x)-\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} \sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}+\frac{b \log \left (a+\sqrt{a^2+b^2}+b \tan (c+d x)+\sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} \sqrt{a+b \tan (c+d x)}\right )}{2 \sqrt{2} \sqrt{a+\sqrt{a^2+b^2}} d}+\frac{2 (a+b \tan (c+d x))^{3/2}}{3 b d}\\ \end{align*}

Mathematica [C]  time = 0.246115, size = 115, normalized size = 0.3 \[ \frac{2 (a+b \tan (c+d x))^{3/2}}{3 b d}+\frac{i \sqrt{a-i b} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a-i b}}\right )}{d}-\frac{i \sqrt{a+i b} \tanh ^{-1}\left (\frac{\sqrt{a+b \tan (c+d x)}}{\sqrt{a+i b}}\right )}{d} \]

Antiderivative was successfully verified.

[In]

Integrate[Tan[c + d*x]^2*Sqrt[a + b*Tan[c + d*x]],x]

[Out]

(I*Sqrt[a - I*b]*ArcTanh[Sqrt[a + b*Tan[c + d*x]]/Sqrt[a - I*b]])/d - (I*Sqrt[a + I*b]*ArcTanh[Sqrt[a + b*Tan[
c + d*x]]/Sqrt[a + I*b]])/d + (2*(a + b*Tan[c + d*x])^(3/2))/(3*b*d)

________________________________________________________________________________________

Maple [A]  time = 0.048, size = 499, normalized size = 1.3 \begin{align*}{\frac{2}{3\,bd} \left ( a+b\tan \left ( dx+c \right ) \right ) ^{{\frac{3}{2}}}}-{\frac{a}{4\,bd}\sqrt{2\,\sqrt{{a}^{2}+{b}^{2}}+2\,a}\ln \left ( b\tan \left ( dx+c \right ) +a+\sqrt{a+b\tan \left ( dx+c \right ) }\sqrt{2\,\sqrt{{a}^{2}+{b}^{2}}+2\,a}+\sqrt{{a}^{2}+{b}^{2}} \right ) }+{\frac{1}{4\,bd}\sqrt{2\,\sqrt{{a}^{2}+{b}^{2}}+2\,a}\sqrt{{a}^{2}+{b}^{2}}\ln \left ( b\tan \left ( dx+c \right ) +a+\sqrt{a+b\tan \left ( dx+c \right ) }\sqrt{2\,\sqrt{{a}^{2}+{b}^{2}}+2\,a}+\sqrt{{a}^{2}+{b}^{2}} \right ) }-{\frac{b}{d}\arctan \left ({ \left ( 2\,\sqrt{a+b\tan \left ( dx+c \right ) }+\sqrt{2\,\sqrt{{a}^{2}+{b}^{2}}+2\,a} \right ){\frac{1}{\sqrt{2\,\sqrt{{a}^{2}+{b}^{2}}-2\,a}}}} \right ){\frac{1}{\sqrt{2\,\sqrt{{a}^{2}+{b}^{2}}-2\,a}}}}+{\frac{a}{4\,bd}\sqrt{2\,\sqrt{{a}^{2}+{b}^{2}}+2\,a}\ln \left ( \sqrt{a+b\tan \left ( dx+c \right ) }\sqrt{2\,\sqrt{{a}^{2}+{b}^{2}}+2\,a}-b\tan \left ( dx+c \right ) -a-\sqrt{{a}^{2}+{b}^{2}} \right ) }-{\frac{1}{4\,bd}\sqrt{2\,\sqrt{{a}^{2}+{b}^{2}}+2\,a}\sqrt{{a}^{2}+{b}^{2}}\ln \left ( \sqrt{a+b\tan \left ( dx+c \right ) }\sqrt{2\,\sqrt{{a}^{2}+{b}^{2}}+2\,a}-b\tan \left ( dx+c \right ) -a-\sqrt{{a}^{2}+{b}^{2}} \right ) }+{\frac{b}{d}\arctan \left ({ \left ( \sqrt{2\,\sqrt{{a}^{2}+{b}^{2}}+2\,a}-2\,\sqrt{a+b\tan \left ( dx+c \right ) } \right ){\frac{1}{\sqrt{2\,\sqrt{{a}^{2}+{b}^{2}}-2\,a}}}} \right ){\frac{1}{\sqrt{2\,\sqrt{{a}^{2}+{b}^{2}}-2\,a}}}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a+b*tan(d*x+c))^(1/2)*tan(d*x+c)^2,x)

[Out]

2/3*(a+b*tan(d*x+c))^(3/2)/b/d-1/4/d/b*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a*ln(b*tan(d*x+c)+a+(a+b*tan(d*x+c))^(1/2
)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))+1/4/d/b*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*ln(b*ta
n(d*x+c)+a+(a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)+(a^2+b^2)^(1/2))-1/d*b/(2*(a^2+b^2)^(1/2)-2*a)
^(1/2)*arctan((2*(a+b*tan(d*x+c))^(1/2)+(2*(a^2+b^2)^(1/2)+2*a)^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))+1/4/b/d*
(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*a*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^
2)^(1/2))-1/4/b/d*(2*(a^2+b^2)^(1/2)+2*a)^(1/2)*(a^2+b^2)^(1/2)*ln((a+b*tan(d*x+c))^(1/2)*(2*(a^2+b^2)^(1/2)+2
*a)^(1/2)-b*tan(d*x+c)-a-(a^2+b^2)^(1/2))+b/d/(2*(a^2+b^2)^(1/2)-2*a)^(1/2)*arctan(((2*(a^2+b^2)^(1/2)+2*a)^(1
/2)-2*(a+b*tan(d*x+c))^(1/2))/(2*(a^2+b^2)^(1/2)-2*a)^(1/2))

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{b \tan \left (d x + c\right ) + a} \tan \left (d x + c\right )^{2}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="maxima")

[Out]

integrate(sqrt(b*tan(d*x + c) + a)*tan(d*x + c)^2, x)

________________________________________________________________________________________

Fricas [B]  time = 2.23471, size = 3688, normalized size = 9.65 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="fricas")

[Out]

1/12*(12*sqrt(2)*b*d^5*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/
4)*arctan(-(sqrt(2)*b*d^5*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^
4) + a^2 + b^2)/b^2)*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4) - sqrt(2)*d^5*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a
^2 + b^2)/b^2)*sqrt((sqrt(2)*b^3*d^3*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqrt((a*d^2*sqrt((a^
2 + b^2)/d^4) + a^2 + b^2)/b^2)*((a^2 + b^2)/d^4)^(3/4)*cos(d*x + c) + (a^2*b^2 + b^4)*d^2*sqrt((a^2 + b^2)/d^
4)*cos(d*x + c) + (a^3*b^2 + a*b^4)*cos(d*x + c) + (a^2*b^3 + b^5)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*s
qrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4) + (a^2 + b^2)*d^4*sqrt(b^2/d^4)*sqrt((a^2 + b^2)/d^4) + (a^3 + a*b^2)*d^2
*sqrt(b^2/d^4))/(a^2*b^2 + b^4))*cos(d*x + c) + 12*sqrt(2)*b*d^5*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2
)/b^2)*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4)*arctan(-(sqrt(2)*b*d^5*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos
(d*x + c))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4) - sqrt(2)
*d^5*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*sqrt(-(sqrt(2)*b^3*d^3*sqrt((a*cos(d*x + c) + b*sin(d
*x + c))/cos(d*x + c))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*((a^2 + b^2)/d^4)^(3/4)*cos(d*x + c
) - (a^2*b^2 + b^4)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) - (a^3*b^2 + a*b^4)*cos(d*x + c) - (a^2*b^3 + b^5)*
sin(d*x + c))/((a^2 + b^2)*cos(d*x + c)))*sqrt(b^2/d^4)*((a^2 + b^2)/d^4)^(3/4) - (a^2 + b^2)*d^4*sqrt(b^2/d^4
)*sqrt((a^2 + b^2)/d^4) - (a^3 + a*b^2)*d^2*sqrt(b^2/d^4))/(a^2*b^2 + b^4))*cos(d*x + c) - 3*sqrt(2)*(a*b*d^3*
sqrt((a^2 + b^2)/d^4)*cos(d*x + c) - (a^2*b + b^3)*d*cos(d*x + c))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b
^2)/b^2)*((a^2 + b^2)/d^4)^(1/4)*log((sqrt(2)*b^3*d^3*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c))*sqr
t((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*((a^2 + b^2)/d^4)^(3/4)*cos(d*x + c) + (a^2*b^2 + b^4)*d^2*sq
rt((a^2 + b^2)/d^4)*cos(d*x + c) + (a^3*b^2 + a*b^4)*cos(d*x + c) + (a^2*b^3 + b^5)*sin(d*x + c))/((a^2 + b^2)
*cos(d*x + c))) + 3*sqrt(2)*(a*b*d^3*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) - (a^2*b + b^3)*d*cos(d*x + c))*sqrt((
a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*((a^2 + b^2)/d^4)^(1/4)*log(-(sqrt(2)*b^3*d^3*sqrt((a*cos(d*x +
c) + b*sin(d*x + c))/cos(d*x + c))*sqrt((a*d^2*sqrt((a^2 + b^2)/d^4) + a^2 + b^2)/b^2)*((a^2 + b^2)/d^4)^(3/4)
*cos(d*x + c) - (a^2*b^2 + b^4)*d^2*sqrt((a^2 + b^2)/d^4)*cos(d*x + c) - (a^3*b^2 + a*b^4)*cos(d*x + c) - (a^2
*b^3 + b^5)*sin(d*x + c))/((a^2 + b^2)*cos(d*x + c))) + 8*((a^3 + a*b^2)*cos(d*x + c) + (a^2*b + b^3)*sin(d*x
+ c))*sqrt((a*cos(d*x + c) + b*sin(d*x + c))/cos(d*x + c)))/((a^2*b + b^3)*d*cos(d*x + c))

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \sqrt{a + b \tan{\left (c + d x \right )}} \tan ^{2}{\left (c + d x \right )}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))**(1/2)*tan(d*x+c)**2,x)

[Out]

Integral(sqrt(a + b*tan(c + d*x))*tan(c + d*x)**2, x)

________________________________________________________________________________________

Giac [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((a+b*tan(d*x+c))^(1/2)*tan(d*x+c)^2,x, algorithm="giac")

[Out]

Timed out